skip to main content


Search for: All records

Creators/Authors contains: "Wenderoth, Mary Pat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. These findings are the first empirical evidence to support the claim that using Physiology Core Concept reasoning supports transfer of knowledge across different physiological systems. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Gardner, Stephanie (Ed.)
    This paper details the development of the first reasoning framework to describe how students’ reasoning about biological bulk flow pressure gradients develop toward scientific, mechanistic reasoning. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract Background

    There is overwhelming evidence that evidence-based teaching improves student performance; however, traditional lecture predominates in STEM courses. To provide support as faculty transform their lecture-based classrooms with evidence-based teaching practices, we created a faculty development program based on best practices, Consortium for the Advancement of Undergraduate STEM Education (CAUSE). CAUSE paired exploration of evidence-based teaching with support for classroom implementation over two years. Each year for three years, CAUSE recruited cohorts of faculty from seven STEM departments. Faculty met biweekly to discuss evidence-based teaching and receive feedback on their implementation. We used the PORTAAL observation tool to document evidence-based teaching practices (PORTAAL practices) across four randomly chosen class sessions each term. We investigated if the number of PORTAAL practices used or the amount of practices increased during the program.

    Results

    We identified identical or equivalent course offerings taught at least twice by the same faculty member while in CAUSE (n = 42 course pairs). We used a one-way repeated measures within-subjects multivariate analysis to examine the changes in average use of 14 PORTAAL practices between the first and second timepoint. We created heat maps to visualize the difference in number of practices used and changes in level of implementation of each PORTAAL practice. Post-hoc within-subjects effects indicated that three PORTAAL practices were significantly higher and two were lower at timepoint two. Use of prompting prior knowledge and calling on volunteers to give answers decreased, while instructors doubled use of prompting students to explain their logic, and increased use of random call by almost 40% when seeking answers from students. Heat maps indicated increases came both from faculty’s adoption of these practices and increased use, depending on the practice. Overall, faculty used more practices more frequently, which contributed to a 17% increase in time that students were actively engaged in class.

    Conclusions

    Results suggest that participation in a long-term faculty development program can support increased use of evidence-based teaching practices which have been shown to improve student exam performance. Our findings can help prioritize the efforts of future faculty development programs.

     
    more » « less
  4. Carvalho, Paulo F. (Ed.)
    Evidence-based teaching practices are associated with improved student academic performance. However, these practices encompass a wide range of activities and determining which type, intensity or duration of activity is effective at improving student exam performance has been elusive. To address this shortcoming, we used a previously validated classroom observation tool, Practical Observation Rubric to Assess Active Learning (PORTAAL) to measure the presence, intensity, and duration of evidence-based teaching practices in a retrospective study of upper and lower division biology courses. We determined the cognitive challenge of exams by categorizing all exam questions obtained from the courses using Bloom’s Taxonomy of Cognitive Domains. We used structural equation modeling to correlate the PORTAAL practices with exam performance while controlling for cognitive challenge of exams, students’ GPA at start of the term, and students’ demographic factors. Small group activities, randomly calling on students or groups to answer questions, explaining alternative answers, and total time students were thinking, working with others or answering questions had positive correlations with exam performance. On exams at higher Bloom’s levels, students explaining the reasoning underlying their answers, students working alone, and receiving positive feedback from the instructor also correlated with increased exam performance. Our study is the first to demonstrate a correlation between the intensity or duration of evidence-based PORTAAL practices and student exam performance while controlling for Bloom’s level of exams, as well as looking more specifically at which practices correlate with performance on exams at low and high Bloom’s levels. This level of detail will provide valuable insights for faculty as they prioritize changes to their teaching. As we found that multiple PORTAAL practices had a positive association with exam performance, it may be encouraging for instructors to realize that there are many ways to benefit students’ learning by incorporating these evidence-based teaching practices. 
    more » « less
  5. Tanner (Ed.)
    Recent calls in biology education research (BER) have recommended that researchers leverage learning theories and methodologies from other disciplines to investigate the mechanisms by which students to develop sophisticated ideas. We suggest design-based research from the learning sciences is a compelling methodology for achieving this aim. Design-based research investigates the “learning ecologies” that move student thinking toward mastery. These “learning ecologies” are grounded in theories of learning, produce measurable changes in student learning, generate design principles that guide the development of instructional tools, and are enacted using extended, iterative teaching experiments. In this essay, we introduce readers to the key elements of design-based research, using our own research into student learning in undergraduate physiology as an example of design-based research in BER. Then, we discuss how design-based research can extend work already done in BER and foster interdisciplinary collaborations among cognitive and learning scientists, biology education researchers, and instructors. We also explore some of the challenges associated with this methodological approach. 
    more » « less
  6. Abstract

    In recent years, there has been a strong push to transform STEM education at K‐12 and collegiate levels to help students learn to think like scientists. One aspect of this transformation involves redesigning instruction and curricula around fundamental scientific ideas that serve as conceptual scaffolds students can use to build cohesive knowledge structures. In this study, we investigated how students use mass balance reasoning as a conceptual scaffold to gain a deeper understanding of how matter moves through biological systems. Our aim was to lay the groundwork for a mass balance learning progression in physiology. We drew on a general models framework from biology and a covariational reasoning framework from math education to interpret students' mass balance ideas. We used a constant comparative method to identify students' reasoning patterns from 73 interviews conducted with undergraduate biology students. We helped validate the reasoning patterns identified with >8000 written responses collected from students at multiple institutions. From our analyses, we identified two related progress variables that describe key elements of students' performances: the first describes how students identify and use matter flows in biology phenomena; the second characterizes how students use net rate‐of‐change to predict how matter accumulates in, or disperses from, a compartment. We also present a case study of how we used our emerging mass balance learning progression to inform instructional practices to support students' mass balance reasoning. Our progress variables describe one way students engage in three dimensional learning by showing how student performances associated with the practice of mathematical thinking reveal their understanding of the core concept of matter flows as governed by the crosscutting concept of matter conservation. Though our work is situated in physiology, it extends previous work in climate change education and is applicable to other scientific fields, such as physics, engineering, and geochemistry.

     
    more » « less
  7. Vision and Change challenged biology instructors to develop evidence-based instructional approaches that were grounded in the core concepts and competencies of biology. This call for reform provides an opportunity for new educational tools to be incorporated into biology education. In this essay, we advocate for learning progressions as one such educational tool. First, we address what learning progressions are and how they leverage research from the cognitive and learning sciences to inform instructional practices. Next, we use a published learning progression about carbon cycling to illustrate how learning progressions describe the maturation of student thinking about a key topic. Then, we discuss how learning progressions can inform undergraduate biology instruction, citing three particular learning progressions that could guide instruction about a number of key topics taught in introductory biology courses. Finally, we describe some challenges associated with learning progressions in undergraduate biology and some recommendations for how to address these challenges. 
    more » « less
  8. Constructed responses can be used to assess the complexity of student thinking and can be evaluated using rubrics. The two most typical rubric types used are holistic and analytic. Holistic rubrics may be difficult to use with expert-level reasoning that has additive or overlapping language. In an attempt to unpack complexity in holistic rubrics at a large scale, we have developed a systematic approach called deconstruction. We define deconstruction as the process of converting a holistic rubric into defining individual conceptual components that can be used for analytic rubric development and application. These individual components can then be recombined into the holistic score which keeps true to the holistic rubric purpose, while maximizing the benefits and minimizing the shortcomings of each rubric type. This paper outlines the deconstruction process and presents a case study that shows defined concept definitions for a hierarchical holistic rubric developed for an undergraduate physiology-content reasoning context. These methods can be used as one way for assessment developers to unpack complex student reasoning, which may ultimately improve reliability and validation of assessments that are targeted at uncovering large-scale complex scientific reasoning. 
    more » « less